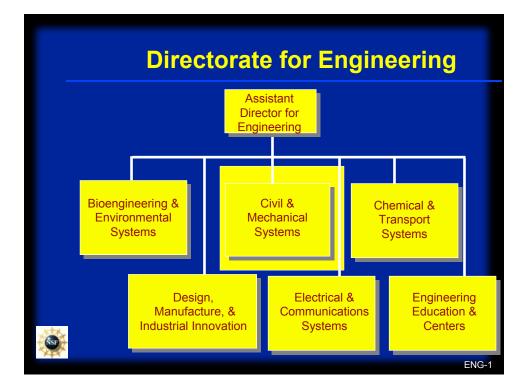

The Promise of NEES Research


Application of the George E. Brown, Jr. Network for Earthquake Engineering Simulation in Collaborative Research

Steven L. McCabe

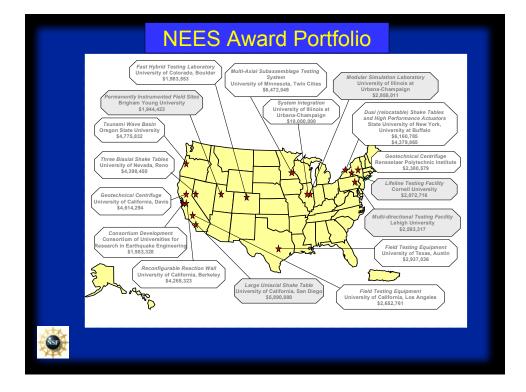
Program Director, Structural Systems and Hazard Mitigation Civil and Mechanical Systems National Science Foundation Arlington ,VA

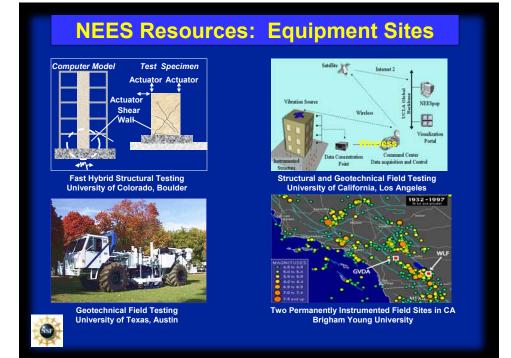
National Science Foundation Earthquake Engineering program

Lies within CMS

- Structural Systems and Hazard Mitigation
- Geotechnical Engineering
- Emergency Response studies

Funding Levels at > \$10 million per year with traditional individual investigator awards (IIA)





Goal of NEES: National Shared Use Resources

- Experimental Sites funded by NSF (ES)
- Experimental Data Repository
 - Grid facilitates replication of results remotely or locally
- Computational Simulation Results Repository
 - Digital content for use in R&D, practice, education, outreach
- Simulation Software Tools Archive
 - Browsable and searchable library of community codes
- Collaborative technologies
- Capabilities (e.g., HPC sites for numeric simulation)
 - Grid facilitates ubiquitous access to computing resources, including highperformance parallel supercomputers

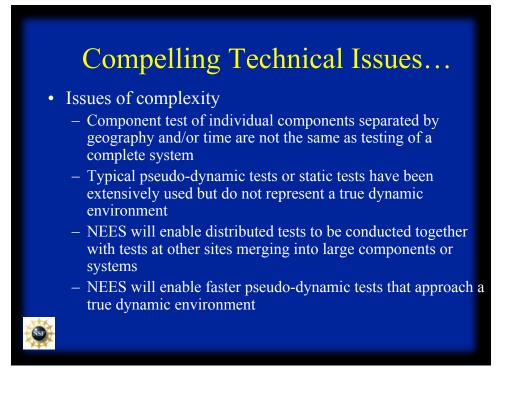
9

NEES Resources: Equipment Sites

Geotechnical Centrifuge University of California, Davis

Tsunami Wave Basin Oregon State University

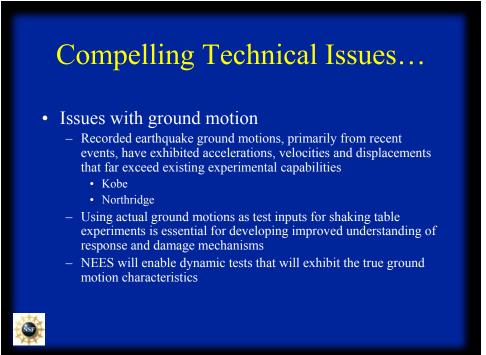
Geotechnical Centrifuge Rensselaer Polytechnic Institute


Reconfigurable Reaction Wall University of California, Berkeley

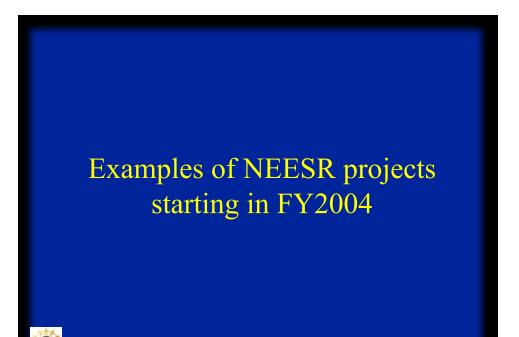
Compelling Technical Issues – what questions will NEES Research answer?

• Issues of scale

- Testing of models has been to reduced scale
- Questions exists as to how the scaling affects the true nature of performance involving nonlinear response
- Material properties, time scale do not scale exactly
 - e.g. fracture in concrete is a function of absolute size
- NEES will enable full or near full scale testing of com0plete structures and components



Compelling Technical Issues...


- Issues of completeness
 - Soil-foundation-structure tests have not been possible because of the different tests required to test the soil, foundation, soil-foundation interface and the structure
 - NEES will enable true complete systems to be evaluated in dynamic or pseudo-dynamic tests for the first time

Japan also is developing a new modern testing environment • Kobe earthquake revealed problems with existing data and decisions based on this data

- Japan independently recognized that scale issues are very important and have resulted in test results that are not as reliable as needed
- Tests of complete systems are needed to examine actual performance to develop better design codes
- Japan is developing the E-Defense shake table at Miki City to conduct full or near full-scale tests
 - \$450 million
 - One facility with limited throughput and participation
 - Agencies (BRI, NIED and PWRI) are running the show with limited university participation

NEES Experimental Project for Verifying Full-Scale Semiactive Control of Nonlinear Structures

Advancing the state of knowledge and acceptance of semiactive damping technology

PI: Richard Christenson Assistant Professor **Division of Engineering** Colorado School of Mines, Golden, CO

Amount: \$196,811 (\$223,823 w/ cost sharing) Duration: 36 months Starting Date: 09/15/03 NEES site: UC Boulder Fast Hybrid Test System

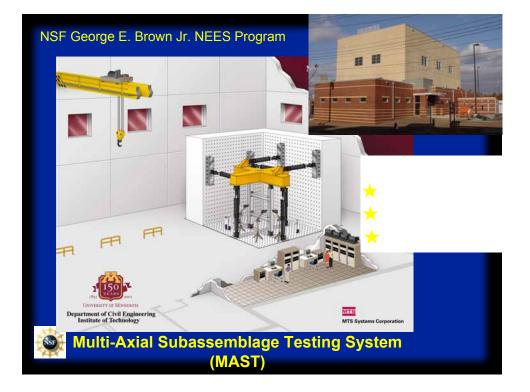
Network for Earthquake Engineering Simulation

Experimental Verification of Semiactive Control Applied to Full-Scale Structures Exhibiting Nonlinear Material Behavior

Sim	lated Building Mode	a
<u>3at</u>	Press Press Press Press	<u>a (28</u>
2008	Planes Planes Channel 14 Kb	e (19
ht	White states a state of states	And D
General		2 HAN
		<u> </u>

More efficient and cost-effective than testing a physical structure. NEES provides equipment and facilities otherwise not available to the PI at the Colorado School of Mines.

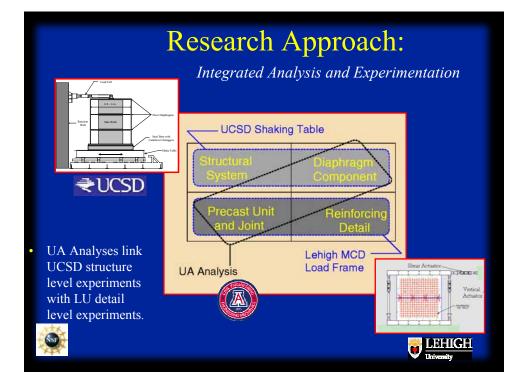
Collaborative Research: Testing and analyses of nonrectangular walls under multi-directional loads


Catherine French Department of Civil Engineering University of Minnesota, Minneapolis, Minnesota

> Sri Sritharan Department of Civil Engineering Iowa State University, Ames, IA

Ricardo Lopez University of Puerto Rico Mayaguez Mayaguez, Puerto Rico

> Suzanne Nakaki Dow Nakaki-Bashaw Group, Inc.

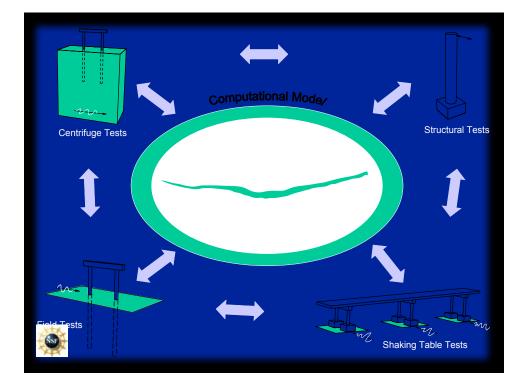


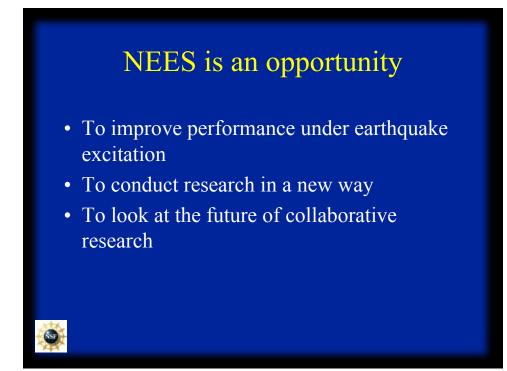
Innovative Bracing Systems

- R. Leon and R. DesRoches Georgia Tech
- M. Bruneau and A. Reinhorn U. at Buffalo
- B. Shing U. of Colorado
- B. Stojadinovic and J. Moehle UC-Berkeley
- M. Abdollah Florida A&M
- A. Elgahzouli Imperial College (London)
 - Test at different loading rates (static, pseudo-dynamic, shake table)
 - Tests at different structural scales (full-scale, subassemblies, members)
 - Three NEES facilities linked in real time to conduct tests

Demonstration of NEES for Studying Soil-Foundation-Structure Interaction

University of Texas: S.L. Wood, E.M. Rathje, K.H. Stokoe Purdue University : J.A. Ramirez San Jose State University : T. Anagnos, K.M. McMullin University of California, Berkeley: G.L. Fenves University of California, Davis: B. Jeremic, B.L. Kutter, D.W. Wilson University of Illinois: J.M. Futrelle University of Kansas: A.B. Matamoros University of Michigan: T.A. Finholt University of Nevada, Reno: M. Saiidi, D.H. Sanders University of Washington: P. Arduino, M.O. Eberhard, S.L. Kramer




Soil-Foundation-Structure Interaction

- Prototype structure reinforced concrete, continuous bridge on drilled shaft foundations.
- Behavior is influenced by ground motion and nonlinear characteristics of the soil, foundation, and structure.
- Not possible to test a single physical model and reproduce all the key aspects of system performance.

NEES Model for Research

- Four series of complementary models will be tested, each conducted at a different scale and designed to investigate a different aspect of the nonlinear response of the prototype structure.
- Computational simulations will be used to interpret the response of the individual experiments, quantify the limitations of each experiment, and model the response of the prototype system.

